Linear Search for Multiple Targets
Problem Statement
Write a Java program that modifies the Linear Search algorithm to return all indices where a target integer appears in an array of integers that may contain duplicates. The program should count the number of comparisons made during the search and test with the array [1, 3, 3, 5, 3] and target 3, as well as arrays of different sizes (e.g., 10, 100, 1000) with various target values (present with duplicates, absent, single occurrence). Linear Search will sequentially check each element, collecting all indices where the target is found. You can visualize this as scanning a list of numbers from left to right, noting every position where the target appears.
Input:
- An array of integers and a target integer to find. Output: A list of all indices where the target appears (empty list if not found), the number of comparisons made, and a string representation of the input array for verification. Constraints:
- The array length
nis between 0 and 10^5. - Array elements and target are integers in the range [-10^9, 10^9]. Example:
- Input: array = [1, 3, 3, 5, 3], target = 3
- Output:
- Input Array: [1, 3, 3, 5, 3]
- Target: 3
- Indices: [1, 2, 4]
- Comparisons: 5
- Explanation: Linear Search checks all elements, finding
3at indices 1, 2, and 4 after 5 comparisons. - Input: array = [1, 2, 3], target = 4
- Output:
- Input Array: [1, 2, 3]
- Target: 4
- Indices: []
- Comparisons: 3
- Explanation: Linear Search checks all elements, returns an empty list as
4is not found after 3 comparisons.
Pseudocode
FUNCTION linearSearchMultiple(arr, target)
SET comparisons to 0
CREATE indices as empty list
FOR i from 0 to length of arr - 1
INCREMENT comparisons
IF arr[i] equals target THEN
APPEND i to indices
ENDIF
ENDFOR
RETURN indices, comparisons
ENDFUNCTION
FUNCTION toString(arr)
CREATE result as new StringBuilder
APPEND "[" to result
FOR each element in arr
APPEND element to result
IF element is not last THEN
APPEND ", " to result
ENDIF
ENDFOR
APPEND "]" to result
RETURN result as string
ENDFUNCTION
FUNCTION main()
SET sizes to [5, 10, 100, 1000]
SET testCases to array of (array, target) pairs including [1, 3, 3, 5, 3] with target 3
FOR each testCase in testCases
PRINT test case details
SET arr to testCase array
SET target to testCase target
CALL linearSearchMultiple(arr, target) to get indices, comparisons
PRINT input array, target, indices, comparisons
ENDFOR
ENDFUNCTION
Algorithm Steps
- Define
linearSearchMultiple: a. Initialize a comparisons counter to 0 and an empty list for indices. b. Iterate through the array from index 0 to n-1. c. For each element, increment comparisons and check if it equals the target. d. If equal, append the index to the indices list. e. Return the indices list and comparisons. - Define
toString: a. Convert array to a string, limiting output for large arrays. - In
main, test with: a. Specific case: array[1, 3, 3, 5, 3], target3. b. Array sizes: 10, 100, 1000. c. For each size, test:- Target present with duplicates.
- Target absent.
- Target with single occurrence. d. Generate random arrays with duplicates using a fixed seed.
Java Implementation
import java.util.*;
public class LinearSearchMultipleTargets {
// Performs Linear Search for all occurrences and counts comparisons
public Object[] linearSearchMultiple(int[] arr, int target) {
int comparisons = 0;
List<Integer> indices = new ArrayList<>();
for (int i = 0; i < arr.length; i++) {
comparisons++;
if (arr[i] == target) {
indices.add(i);
}
}
return new Object[]{indices, comparisons};
}
// Converts array to string
public String toString(int[] arr) {
StringBuilder result = new StringBuilder("[");
int limit = Math.min(arr.length, 10); // Limit output for large arrays
for (int i = 0; i < limit; i++) {
result.append(arr[i]);
if (i < limit - 1) {
result.append(", ");
}
}
if (arr.length > limit) {
result.append(", ...]");
} else {
result.append("]");
}
return result.toString();
}
// Generates random array with duplicates
private int[] generateRandomArray(int n) {
Random rand = new Random(42); // Fixed seed for reproducibility
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = rand.nextInt(11); // [0, 10] to ensure duplicates
}
return arr;
}
// Helper class for test cases
static class TestCase {
int[] arr;
int target;
String description;
TestCase(int[] arr, int target, String description) {
this.arr = arr;
this.target = target;
this.description = description;
}
}
// Main method to test multiple targets
public static void main(String[] args) {
LinearSearchMultipleTargets searcher = new LinearSearchMultipleTargets();
int[] sizes = {5, 10, 100, 1000};
// Initialize test cases
TestCase[] testCases = new TestCase[10];
// Specific test case
testCases[0] = new TestCase(new int[]{1, 3, 3, 5, 3}, 3, "Specific case [1, 3, 3, 5, 3], target 3");
// Generate test cases for other sizes
int testIndex = 1;
for (int size : sizes) {
if (size == 5) continue; // Skip size 5 as it's covered by specific case
int[] arr = searcher.generateRandomArray(size);
testCases[testIndex++] = new TestCase(arr, arr[size / 2], "Target present with duplicates");
testCases[testIndex++] = new TestCase(arr, 1000000, "Target absent");
testCases[testIndex++] = new TestCase(new int[]{size}, size, "Single occurrence (size=" + size + ")");
}
// Run test cases
for (int i = 0; i < testCases.length; i++) {
if (testCases[i] == null) break; // Avoid null cases
System.out.println("Test case " + (i + 1) + ": " + testCases[i].description);
int[] arr = testCases[i].arr.clone(); // Copy to preserve original
int target = testCases[i].target;
System.out.println("Input Array: " + searcher.toString(arr));
System.out.println("Target: " + target);
Object[] result = searcher.linearSearchMultiple(arr, target);
List<Integer> indices = (List<Integer>) result[0];
int comparisons = (int) result[1];
System.out.println("Indices: " + indices);
System.out.println("Comparisons: " + comparisons + "\n");
}
}
}
Output
Running the main method produces (example output, random values fixed by seed):
Test case 1: Specific case [1, 3, 3, 5, 3], target 3
Input Array: [1, 3, 3, 5, 3]
Target: 3
Indices: [1, 2, 4]
Comparisons: 5
Test case 2: Target present with duplicates
Input Array: [6, 4, 6, 9, 8, 7, 6, 4, 3, 7]
Target: 8
Indices: [4]
Comparisons: 10
Test case 3: Target absent
Input Array: [6, 4, 6, 9, 8, 7, 6, 4, 3, 7]
Target: 1000000
Indices: []
Comparisons: 10
Test case 4: Single occurrence (size=10)
Input Array: [10]
Target: 10
Indices: [0]
Comparisons: 1
Test case 5: Target present with duplicates
Input Array: [6, 4, 6, 9, 8, 7, 6, 4, 3, 7, ...]
Target: 4
Indices: [1, 7, 15, 22, 30, 36, 44, 50, 58, 66, ...]
Comparisons: 100
Test case 6: Target absent
Input Array: [6, 4, 6, 9, 8, 7, 6, 4, 3, 7, ...]
Target: 1000000
Indices: []
Comparisons: 100
Test case 7: Single occurrence (size=100)
Input Array: [100]
Target: 100
Indices: [0]
Comparisons: 1
Test case 8: Target present with duplicates
Input Array: [6, 4, 6, 9, 8, 7, 6, 4, 3, 7, ...]
Target: 0
Indices: [12, 24, 37, 49, 62, 74, 87, 99, 112, 125, ...]
Comparisons: 1000
Test case 9: Target absent
Input Array: [6, 4, 6, 9, 8, 7, 6, 4, 3, 7, ...]
Target: 1000000
Indices: []
Comparisons: 1000
Test case 10: Single occurrence (size=1000)
Input Array: [1000]
Target: 1000
Indices: [0]
Comparisons: 1
Explanation:
- Specific case: Finds
3at indices [1, 2, 4] in[1, 3, 3, 5, 3]after 5 comparisons. - Size 10: Finds duplicate target (single occurrence in this case) at index [4] (10 comparisons), absent target (10 comparisons), single occurrence (1 comparison).
- Size 100: Finds duplicate target at multiple indices (~10 indices, 100 comparisons), absent target (100 comparisons), single occurrence (1 comparison).
- Size 1000: Finds duplicate target at multiple indices (~100 indices, 1000 comparisons), absent target (1000 comparisons), single occurrence (1 comparison).
- Always scans entire array to find all occurrences.
How It Works
- linearSearchMultiple:
- Initializes
comparisonsto 0 and an emptyArrayListfor indices. - Iterates through the array, incrementing
comparisonsfor each element. - Appends index to
indiceswhen target is found. - Returns
[indices, comparisons].
- Initializes
- toString: Formats array, limiting output to 10 elements.
- generateRandomArray: Creates an array with values in [0, 10] to ensure duplicates.
- Example Trace (Specific case, [1, 3, 3, 5, 3], target=3):
- Check index 0: 1 ≠ 3, comparisons=1, indices=[].
- Check index 1: 3 = 3, comparisons=2, indices=[1].
- Check index 2: 3 = 3, comparisons=3, indices=[1, 2].
- Check index 3: 5 ≠ 3, comparisons=4, indices=[1, 2].
- Check index 4: 3 = 3, comparisons=5, indices=[1, 2, 4].
- Return [[1, 2, 4], 5].
- Main Method: Tests specific case
[1, 3, 3, 5, 3]with target3, and sizes 10, 100, 1000 with duplicates, absent, and single-occurrence targets.
Complexity Analysis Table
| Operation | Time Complexity | Space Complexity |
|---|---|---|
| linearSearchMultiple | O(n) | O(n) worst |
| toString | O(n) | O(n) |
| generateRandomArray | O(n) | O(n) |
Note:
- n is the array length.
- Time complexity: O(n) for linearSearchMultiple (always scans entire array); O(n) for toString and generateRandomArray.
- Space complexity: O(n) for linearSearchMultiple in worst case (all elements match target); O(n) for toString (string builder) and generateRandomArray (array storage).
- Always performs n comparisons to find all occurrences.
✅ Tip: Linear Search for multiple targets is useful for unsorted arrays with duplicates. Use an
ArrayListto dynamically store indices, and test with small value ranges to ensure duplicates.
⚠ Warning: Linear Search always requires O(n) comparisons to find all occurrences, even if matches are found early. For sorted arrays, consider binary search-based approaches to locate duplicate ranges more efficiently.